Estimation of a Jacobi process
نویسندگان
چکیده
In this paper we consider a discretely sampled Jacobi process appropriate to specify the dynamics of a process with range [0,1], such as a discount coefficient, a regime probability, or a state price. The discrete time transition of the Jacobi process does not admit a closed form expression and therefore the exact maximum likelihood is unfeasable. We first review different characterizations of the transition function based on nonlinear canonical decomposition, partial differential equations.. They allow for approximations of the log-likelihood function which can be used to define an approximated maximum likelihood estimator. The finite sample properties of this estimator are compared with the properties of Kessler and Sorensen’s estimator based on the eigenfunctions of the generator of the diffusion. But also simulation based estimators, such as generalized method of moments (GMM) estimator, simulated method of moments (SMM) estimator or indirect inference estimator are considered. Résumé Dans cet essai, nous considérons un processus de Jacobi échantillonné en temps discret permettant de spécifier la dynamique de processus à valeurs dans [0, 1], tels qu’ un coéfficient d’actualisation, une probabilité de régime, ou un prix d’état. La fonction de transition en temps discret du processus de Jacobi n’admettant pas ∗ University of Toronto † Centre interuniversitaire de recherche en économie quantitative (CIREQ), Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Département de sciences économiques, Université de Montréal. Mailing address: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. e-mail: [email protected]. d’expression analytique, le maximum de vraisemblance ne peut alors être déterminé . Nous rappelons dans un premier temps diverses caractérisations de la fonction de transition en nous appuyant sur la décomposition canonique non linéaire, sur les équations différentielles partielles.. Elles induisent des approximations de la fonction de vraisemblance qui peuvent être utilisées afin de définir un estimateur du maximum de vraisemblance approximé. Les propriétés de petit échantillon de cet estimateur sont alors comparées à celles de l’estimateur fondé sur les fonctions propres de Kessler et Sorensen. Nous considérons également des estimateurs obtenus par simulations, tels l’estimateur des moments généralisés (GMM), l’estimateur des moments simulés (SMM) ou encore l’estimateur par inférence indirecte.
منابع مشابه
Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملSome Results for the Jacobi-Dunkl Transform in the Space $L^{p}(mathbb{R},A_{alpha,beta}(x)dx)$
In this paper, using a generalized Jacobi-Dunkl translation operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the Lipschitz Jacobi-Dunkl condition in the space Lp.
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملOn the Markov sequence problem for Jacobi polynomials
We give a simple and entirely elementary proof of Gasper’s theorem on the Markov sequence problem for Jacobi polynomials. It is based on the spectral analysis of an operator that arises in the study of a probabilistic model of colliding molecules introduced by Marc Kac. In the process, we obtain some new integral formulas for ratios of Jacobi polynomials that generalize Gasper’s product formula...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملAn Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002